Devoir surveillé 1

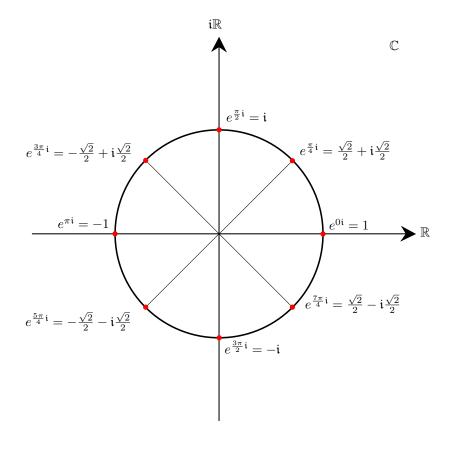
Exercice 1. 1. Les solutions de $z^8 = 1$ sont données par

$$z = e^{i2k\pi/8} = e^{ik\pi/4}, \qquad k = 0, \dots, 7.$$

En notation cartésienne, on obtient

$$z = \cos\left(\frac{k\pi}{4}\right) + \mathfrak{i}\sin\left(\frac{k\pi}{4}\right), \qquad k = 0, \dots, 7.$$

2. Les racines huitièmes de l'unité sont les sommets d'un polygone régulier à 8 côtés, sont contenues dans la cercle de rayon 1, et l'une de ces racines est 1:



- 3. Rappelons qu'une racine n-ème η de l'unité est dite primitive si pour tout $0 \le m < n$ on a $\eta^m \ne 1$. On en déduit que les racines primitives huitièmes de l'unité sont : $e^{\mathrm{i}\pi/4}$, $e^{\mathrm{i}3\pi/4}$, $e^{\mathrm{i}5\pi/4}$ et $e^{\mathrm{i}7\pi/4}$.
- 4. Rappelons que si $w \in \mathbb{C}$ désigne un nombre complexe, et z_1, \ldots, z_n ses racines n-èmes. Alors on a

$$\prod_{k=1}^{n} z_k = (-1)^{n+1} w, \qquad \sum_{k=1}^{n} z_k = 0.$$
 (1)

Par suite $1 + \eta + \eta^2 + \eta^3 + \eta^4 + \eta^5 + \eta^6 + \eta^7 = 0$, i.e. $\eta + \eta^2 + \eta^3 + \eta^4 + \eta^5 + \eta^6 + \eta^7 = -1$.

Exercice 2. Remarquons que l'équation suivante

$$(1+i)z^2 - 4z + 3 = 9i.$$

est équivalente à

$$(1+i)(z^2 - 2(1-i)z - (3+6i)) = 0.$$

On est donc ramené à résoudre $z^2 - 2(1 - i)z - (3 + 6i) = 0$. Le discriminant de cette équation est

$$\Delta = (-2(1-i))^2 - 4(-(3+6i)) = 4(3+4i).$$

Déterminons les racines carrées de $(3+4\mathbf{i})$, *i.e.* les nombres complexes w tels que $w^2=3+4\mathbf{i}$. Écrivons w sous la forme $u+\mathbf{i}v$; alors $w^2=3+4\mathbf{i}$ se réecrit $u^2-v^2=3$ et 2uv=4. Par ailleurs $|w^2|=|3+4\mathbf{i}|$, soit $u^2+v^2=5$. On en déduit que $u^2=4$, $v^2=1$ et 2uv=4; autrement dit $2+\mathbf{i}$ et $-2-\mathbf{i}$ sont les racines carrées de $3+4\mathbf{i}$. Finalement les solutions de $z^2-2(1-\mathbf{i})z-(3+6\mathbf{i})=0$ sont données par 3 et $-1-2\mathbf{i}$.

Exercice 3. 1. Pour tout *n* entier positif on a

$$\overline{\left(\frac{(1+\mathfrak{i})^n}{(1-\mathfrak{i})^{n-1}}\right)} = \overline{\frac{(1+\mathfrak{i})^n}{(1-\mathfrak{i})^{n-1}}} = \overline{\frac{(1+\mathfrak{i})^n}{(1-\mathfrak{i})^{n-1}}} = \frac{(1-\mathfrak{i})^n}{(1+\mathfrak{i})^{n-1}}$$

Autrement dit $\frac{(1+i)^n}{(1-i)^{n-1}}$ et $\frac{(1-i)^n}{(1+i)^{n-1}}$ sont conjugués.

2. Calculons $\frac{(1+i)^3}{(1-i)^2} + \frac{(1-i)^3}{(1+i)^2}$:

$$\frac{(1+i)^3}{(1-i)^2} + \frac{(1-i)^3}{(1+i)^2} = \frac{(1+i)^3}{(1-i)^2} + \frac{\overline{(1+i)^3}}{(1-i)^2} \\
= 2\operatorname{Re}\left(\frac{(1+i)^3}{(1-i)^2}\right) \\
= 2\operatorname{Re}\left(\sqrt{2}\frac{\left(\frac{\sqrt{2}}{2} + \frac{i\sqrt{2}}{2}\right)^3}{\left(\frac{\sqrt{2}}{2} - \frac{i\sqrt{2}}{2}\right)^2}\right) \\
= 2\operatorname{Re}\left(\sqrt{2}\frac{\left(e^{i\pi/4}\right)^3}{\left(e^{-i\pi/4}\right)^2}\right) \\
= 2\sqrt{2}\operatorname{Re}\left(e^{3i\pi/4 + 2i\pi/4}\right) \\
= 2\sqrt{2}\operatorname{Re}\left(e^{5i\pi/4}\right) \\
= 2\sqrt{2}\operatorname{Re}\left(e^{-3i\pi/4}\right) \\
= 2\sqrt{2}\operatorname{Re}\left(e^{-3i\pi/4}\right) \\
= 2\sqrt{2}\left(-\frac{\sqrt{2}}{2}\right) \\
= -2$$